第六十三章 省赛开考!哈密顿图!(2 / 2)

仅仅一次的圈”称之为“哈密顿圈”,一个图如果包含哈密顿圈,那这个图就可以被称为“哈密顿图”。

从表面上来看,这个哈密顿问题似乎与欧拉的哥尼斯堡七桥问题非常相似,但两者有着本质的区别。

所谓“哥尼斯堡七桥问题”,是指河中有两个岛,河上有七座桥连接这两个岛及河的两岸,请问能否通过每座桥一次且仅一次。它也被称为“一笔画”问题。哥尼斯堡七桥问题早已被欧拉自己解决了,并由此开创了数学的新分支——“图论”。

哈密顿问题却迄今为止都未曾解决,一百多年来无数一流的数学家费尽心思,也没找到判断它的充分必要条件,只是提出了一些已被证实的必要条件和充分条件,应用到不同的场合。

这道题目难就难在不但要求解题人了解哈密顿图的特点和那些已被证实的必要条件和充分条件,更要能灵活运用。

秦克一看到这题目,就知道宁青筠答不出来——因为时间有限,有关哈密顿图他只是给宁青筠讲解过两道例题,并不算深入,以宁青筠对哈密顿图的理解,不可能答得出来。

不只是宁青筠,估计整个考场,除了他也没第二个人能答出来。

秦克揉揉有点发胀的太阳穴,沉思了三分多钟,才开始动笔:

“解:首先每个点的度至少为3,不然存在一点A仅连出至多两边,则把其中一边去掉后,剩下的A点必不在某个圈上,这与条件不符,因此可以得出,n≥3……”

“当n=4时……”

“……”

“当n=10时,条件才成立,所以本题的答案为10,具体图示如下:”

秦克画了一个正五边形,中间是个“一笔画”的五角星形,五星形的各个顶点再与包围它的五边形顶点相连。

这就是n=10的时候,最符合题意的图,任意去掉一点及与之相连的边,剩下的图为哈密顿图。

解答过程写了整整大半页纸,几乎将答题区域写满。